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Abstract—Service robots can benefit from maps that support
their tasks and facilitate communication with humans. For effi-
cient interaction, it is practical to be able to reference structures
and objects in the environment, e.g. “fetch the mug from the
kitchen table.” Towards this end, we present a feature-based
SLAM and semantic mapping system which uses a variety of
feature types as landmarks, including planar surfaces such as
walls, tables, and shelves, as well as objects such as door signs.
These landmarks can be optionally labeled by a human for later
reference. Support for partitioning maps into labeled regions or
places is also presented.

I. INTRODUCTION

Service robots need to have maps that support their tasks.
Traditional robot mapping solutions are well-suited to sup-
porting navigation and obstacle avoidance tasks by repre-
senting occupancy information. However, it can be difficult
to enable higher-level understanding of the world’s structure
using occupancy-based mapping solutions. One of the most
important competencies for a service robot is to be able to
accept commands from a human user. Many such commands
will include instructions that reference objects, structures, or
places, so our mapping system should be designed with this
in mind.

Towards this goal, we present GTmapper, a feature based
SLAM and semantic mapping system. In contrast to grid
based mappers or visual SLAM systems that use features
such as SIFT keypoints, our mapper utilizes landmarks that
correspond to entities that are meaningful to humans as well as
the robot, such as walls, tables, shelves, or objects such as door
signs. In conjunction with a human operator, GTmapper allows
for labeling of these structures and objects. It also supports
partitioning the map into labeled spaces, with the assistance
of a human providing the labels. Landmarks such as door signs
make labeling particularly easy, as the appropriate label can
be read directly from the landmark using optical character
recognition (OCR), without the need for human assistance.

We believe that our map representation is well suited to
grounding of labels, as each landmark used by our mapper is
a distinct entity in the world, and can optionally be labeled by
a human. We present a summary of our work on this mapping
system, and discuss its suitability for tasks that require spatial
dialog.

II. RELATED WORK

The most closely related line of research to this work is
the previous work on semantic mapping which focuses on
creating maps that capture a higher level of understanding

and meaning, such as [5] and [1]. There has also been
a great deal of previous work on segmentation of indoor
environments into relevant parts for use by service robots, such
as [8]. Additionally, another related focus has been on the use
of language for referencing spatial information contained in
maps, such as understanding of natural language directions
with respect to a map, as presented in [4].

For a more detailed treatment of the related work, see [9],
[6], and [10].

III. MAPPING SYSTEM

Our feature-based mapping system makes use of the GT-
SAM (smoothing and mapping) library of Dellaert [2]. GT-
SAM solves the smoothing and mapping problem using factor
graphs that relate landmark poses to robot poses. The factors
are nonlinear measurements produced by measuring various
features. New factor types can be defined and used by speci-
fying a measurement function along with its derivatives with
respect to the robot pose and the landmark pose. The resulting
factor graph can be used to optimize the positions of the
landmarks as well as the robot poses. Note that we are solving
the full SLAM problem, recovering not just the current robot
pose, but the full trajectory along with the landmark poses.

Our mapping system makes use of the GTSAM optimization
and inference tools, and defines a variety of feature types
that can be used for SLAM and semantic mapping. We
have defined features which correspond to discrete entities
in the world, such as planar surfaces or door signs, which
can optionally be labeled. A detailed description of earlier
work on this system using 2D line measurements as features
is presented in [9]. Here we will present our recent work,
focusing on semantic labeling of landmarks and places. An
example demonstrating the map representation is shown in
Figure 1.

The robot used to create these maps is the Jeeves robot,
shown in Figure 2. Jeeves is comprised of a Segway RMP-
200 mobile base, and is equipped with a variety of sensors. A
SICK LMS-291 laser scanner is used for obstacle avoidance,
as well as a 3D laser scanner comprised of a Hokuyo UTM-
30LX laser scanner on a Directed Perception DP-47-70 pan-tilt
unit, and a Prosilica camera used for object recognition. The
platform is also equipped with a parallel jaw gripper mounted
on a 1-DOF linear actuator, which allows basic manipulation
tasks when combined with the Segway’s additional degrees of
freedom.



Fig. 1. An example of the type of map representation used by our system,
including a robot trajectory (poses x1 ... x4), a planar feature with attached
label, a door sign feature with a label, and a labeled region. Labels are optional
for planar features and sign features. Also note that the regions are not a part
of the SLAM factor graph, as they are not used as landmarks for SLAM.

Fig. 2. Jeeves, the robot platform used in this work. The 2D SICK laser
scanner is used for obstacle avoidance and place labeling, while the Hokuyo
laser scanner combined with the pan-tilt unit is used to generate 3D point
cloud data, used for planar surface mapping. The camera used for door sign
recognition can also be found on the pan-tilt head.

A. Planes

One type of landmark used by our system is planar surfaces
extracted from point cloud data. 3D laser scanners or RGB-D
sensors such as the Microsoft Kinect can be used to collect
suitable data. Planes are then extracted from the point cloud by
an iterative RANdom SAmple Consensus (RANSAC) method,
which allows us to find all planes meeting constraints for size
and number of inliers. A clustering step is also performed
on extracted planes in order to separate multiple coplanar
surfaces, such as two tables with the same height, but at
different locations. We make use of the Point Cloud Library
(PCL) for much of our point cloud processing.

Planes can be represented by the well known equation: ax+
by + cz + d = 0. Our mapper then represents the planes as:
p =

[
n, hull

]
where: n =

[
a, b, c, d

]
and hull is a point cloud

of the vertices of the plane’s convex hull. As the robot platform

moves through the environment and measures planes multiple
times, the mapped planes’ hulls will be extended with each
new portion seen, allowing the use of large planes such as
walls where the full extent is typically not observed in any
single measurement.

This type of plane can then be used for localization purposes
by using the surface normal and perpendicular distance from
the robot. In addition to being useful for localization, we
believe that these surfaces are also useful for communication
with humans. Many service robot tasks may require interaction
with objects on horizontal planar surfaces, such as tables or
shelves, and navigational tasks may require an understanding
of planar surfaces such as walls or doors. In order to support
such tasks, our mapping system allows planar surfaces to
optionally support a label, such as “kitchen table” or “Henrik’s
desk,” so that they may be easily referenced by a human
user. Labels are entered interactively via a command line
application. Planes corresponding to walls, the floor, or the
ceiling can also be labeled, and multiple planes can share the
same label as well. For example, one could label two walls of
a hallway as “front hall,” which gives the robot an idea of the
extent of this structure.

Preliminary results on maps that represent the locations and
extent of this type of planar feature are presented in [10]. More
recent work includes the use of these features as landmarks for
our SLAM, as described above. A map comprised of planar
surfaces is shown in Figure 3, and a top-down view is shown in
Figure 4 after a large correction was made following a loop-
closure. A close-up view of some labeled planar features is
shown in Figure 5.

Fig. 3. An example of a map composed of planar surfaces. The mapped
area shows several cubicles, with walls, cubicle walls, and desks used as
landmarks. The convex hulls of the planar regions are shown in red, and blue
lines represent measurements, indicating which poses features were measured
from. Surface normals are shown in red for vertical surfaces, and green
for horizontal surfaces. The full point clouds are displayed in white, for
visualization purposes only; only the extracted planes are used for mapping
and localization.

B. Signs

Door signs commonly found outside of offices are another
type of landmark supported by our mapper. These are par-



Fig. 4. Another view of a map composed of planar surfaces, after a loop
closure has taken place. The full point clouds are displayed for visualization
only. Only the extracted planes are used for mapping and localization.

Fig. 5. A visualization of a planar map that include labels. The hori-
zontal table is labeled as “dining table,” and the back wall is labeled as
“dining area wall.”

ticularly interesting from a semantic perspective because the
relevant label can be read directly from the object using OCR.

In our previous work [7], signs are recognized in images
by first extracting salient regions using the spectral-residual
technique of Hou and Zhang in [3]. A Histogram of Oriented
Gradients (HOG) feature is computed from each of the salient
regions in the image and it is classified by an SVM which was
trained on HOG features of signs. If the SVM classifies this
HOG feature as a sign, then the text on the image is read by an
OCR routine to provide a label; currently our implementation
makes a request to the online service Google Goggles for this
purpose.

Signs and their associated labels are provided as mea-
surements to the mapper where laser scan data is fused to
generate a 3D point measurement. Semantic data association
between new measurements and mapped signs is performed
by matching text strings by analyzing the longest common
substring (LCS). The use of the LCS as a similarity measure
allows for some minor errors in OCR to occur while still
permitting data association.

To validate this technique, we performed a series of large
loop-closure runs in an office building. In these test runs, the

robot makes observations of door signs as in Figure 6 which
enable it to close large loops. An example map can be seen in
Figure 7. The semantic text labels on door signs are used for
data association and could also be used for grounding human-
robot dialogue, e.g. ”Robot: Go to room 213”.

Fig. 6. An example of an image used to generate a measurement of a door
sign landmark. The text read by the OCR program is displayed.

Fig. 7. An example of a map using door sign landmarks. The pink spheres
denote the 3D locations of the signs, with lines showing the poses from which
each sign was measured. The thick red lines are 2D walls as measured by
the robot’s laser scanner. The current image is shown as an inset, with the
detected sign indicated by the green box.

C. Places

While labeling discrete features is quite useful, it can be
helpful for some tasks to have a means of associating a label
with a region of a map. Towards this end, we have created
a means of interactively labeling places within a map. Our
system partitions the map into sets of Gaussian models based
on the 2D laser scanner’s current view. As the robot moves
throughout the map, a human user can enter a label for the
current location via a command line application. When a label
is provided, a Gaussian is fit to the 2D laser scanner’s most
recent point cloud, and tagged with the entered label. Each
labeled region is represented by one or more such Gaussians
in the metric map’s coordinate frame, which can produce
complex decision boundaries when many locations are tagged
with the same label. The result is a collection of regions which
represent places in our semantic map. An example of such a
partition is shown in Fig. 8. The robot can then use this map to
determine its current location by calculating the Mahalanobis
distance to each Gaussian region and give the label of the
nearest one. The user can also request that the robot move to



a region with a specific label, and it will plan a path and move
to the nearest region with the requested label.

In order to evaluate our approach, experiments were per-
formed both in simulation and using our robot. Our work
on this is presented in [6]. We designed two simulated en-
vironments in which the robot can be taught locations and
asked to navigate between them. These experiments consisted
of a human user providing labels for many regions, including
rooms and hallways. An example of the decision boundaries
of using this approach for a simulated experiment is shown in
Figure 8.

Fig. 8. A simulated environment with many rooms that has been partitioned
into several regions is shown on the left, with the corresponding decision
boundaries shown on the right.

IV. CONCLUSION

We have summarized our work on a mapping system
capable of using a variety of semantically relevant landmarks
as features. The locations and extent of planar surfaces such
as tables, shelves, and walls can be represented, labeled, and
used for localization and mapping. Door signs can be detected
and read by OCR software, and also used for mapping. Finally,
these maps can be partitioned into labeled spaces in order to
support tasks that require dialogs regarding places in a map,
as opposed to specific structures, e.g. “the kitchen” rather than
“the kitchen table.”

Our efforts thus far have primarily focused on the con-
struction of maps that capture relevant information about
spatial structure, as well as applying labels to the appropriate
structures or regions. In order to appropriately ground labels in
the map, we believe that segmenting the world into meaningful
landmarks is a good approach. We have shown our mapper’s
ability to create maps suitable for localization, and have shown
preliminary support for tasks that involve dialog regarding
labeled surfaces, objects, and places.

Although we believe that our map representation is well
suited for engaging in spatial task related dialogs, our use of
the labels so far has been limited to very simple commands
such as “go to label.” Detailed experiments and user studies
on the use of these maps in the context of service robotic tasks
are left as future work. As additional future work, we hope
to employ a more advanced dialog system allowing a wider

range of spatial commands to be understood, such as natural
language directions, as in Kollar et. al [4].

ACKNOWLEDGMENTS

This work was made possible through the Boeing corpo-
ration and ARL MAST CTA project 104953. We would also
like to thank the reviewers for their helpful comments.

REFERENCES

[1] P. Beeson, M. MacMahon, J. Modayil, A. Murarka,
B. Kuipers, and B. Stankiewicz. Integrating multiple
representations of spatial knowledge for mapping, nav-
igation, and communication. In Symposium on Interac-
tion Challenges for Intelligent Assistants, AAAI Spring
Symposium Series, Stanford, CA, March 2007. AAAI
Technical Report SS-07-04.

[2] F. Dellaert and M. Kaess. Square root SAM: Simultane-
ous localization and mapping via square root information
smoothing. International Journal of Robotics Research,
25(12):1181–1204, 2006.

[3] X. Hou and L. Zhang. Saliency detection: A spectral
residual approach. CVPR, 2007.

[4] T. Kollar, S. Tellex, D. Roy, and N. Roy. Toward under-
standing natural language directions. In Proceeding of
the 5th ACM/IEEE international conference on Human-
robot interaction, pages 259–266. ACM, 2010.

[5] Ó. Martı́nez Mozos, R. Triebel, P. Jensfelt, A. Rottmann,
and W. Burgard. Supervised semantic labeling of places
using information extracted from sensor data. Robot.
Auton. Syst., 55(5):391–402, 2007. ISSN 0921-8890.

[6] C. Nieto-Granda, J. G. Rogers, A. J. B. Trevor, and
H. I. Christensen. Semantic map partitioning in indoor
environments using regional analysis. In Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ Interna-
tional Conference on, pages 1451–1456. IEEE, 2010.

[7] J. G. Rogers III, A. J. B. Trevor, C. Nieto-Granda,
and H.I. Christensen. Simultaneous localization and
mapping with learned object recognition and semantic
data association. In Submitted to IEEE Conference on
Intelligent Robots and Systems, 2011.

[8] R.B. Rusu, N. Blodow, Z.C. Marton, and M. Beetz.
Close-range Scene Segmentation and Reconstruction of
3D Point Cloud Maps for Mobile Manipulation in Human
Environments. In Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), St. Louis, MO, USA, 2009.

[9] A. J. B. Trevor, J. G. Rogers III, C. Nieto-Granda, and
H.I. Christensen. Applying domain knowledge to SLAM
using virtual measurements. International Conference on
Robotics and Automation, 2010.

[10] A. J. B. Trevor, J. G. Rogers III, C. Nieto-Granda, and
H.I. Christensen. Tables, counters, and shelves: Semantic
mapping of surfaces in 3d. In IROS Workshop on Seman-
tic Mapping and Autonomous Knowledge Acquisition,
2010.


	Introduction
	Related Work
	Mapping System
	Planes
	Signs
	Places

	Conclusion

